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Abstract 

Background  Signal complexity (i.e. entropy) describes the level of order within a system. Low physiological sig-
nal complexity predicts unfavorable outcome in a variety of diseases and is assumed to reflect increased rigidity 
of the cardio/cerebrovascular system leading to (or reflecting) autoregulation failure. Aneurysmal subarachnoid hem-
orrhage (aSAH) is followed by a cascade of complex systemic and cerebral sequelae. In aSAH, the value of entropy 
has not been established yet.

Methods  aSAH patients from 2 prospective cohorts (Zurich—derivation cohort, Aachen—validation cohort) were 
included. Multiscale Entropy (MSE) was estimated for arterial blood pressure, intracranial pressure, heart rate, and their 
derivatives, and compared to dichotomized (1–4 vs. 5–8) or ordinal outcome (GOSE—extended Glasgow Outcome 
Scale) at 12 months using uni- and multivariable (adjusted for age, World Federation of Neurological Surgeons grade, 
modified Fisher (mFisher) grade, delayed cerebral infarction), and ordinal methods (proportional odds logistic regres-
sion/sliding dichotomy). The multivariable logistic regression models were validated internally using bootstrapping 
and externally by assessing the calibration and discrimination.

Results  A total of 330 (derivation: 241, validation: 89) aSAH patients were analyzed. Decreasing MSE was associated 
with a higher likelihood of unfavorable outcome independent of covariates and analysis method. The multivari-
able adjusted logistic regression models were well calibrated and only showed a slight decrease in discrimination 
when assessed in the validation cohort. The ordinal analysis revealed its effect to be linear. MSE remained valid 
when adjusting the outcome definition against the initial severity.

Conclusions  MSE metrics and thereby complexity of physiological signals are independent, internally and externally 
valid predictors of 12-month outcome. Incorporating high-frequency physiological data as part of clinical outcome 
prediction may enable precise, individualized outcome prediction. The results of this study warrant further investiga-
tion into the cause of the resulting complexity as well as its association to important and potentially preventable 
complications including vasospasm and delayed cerebral ischemia.
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Introduction
Aneurysmal subarachnoid hemorrhage (aSAH) remains a 
serious disease with often poor prognosis even after suc-
cessful securing of the aneurysm [1]. Patients who sur-
vive the initial hemorrhage remain at risk for developing 
secondary brain injury, such as delayed cerebral ischemia 
(DCI) [2]. DCI is a major cause of death and disability 
after aSAH [3]. It is the consequence of complex inter-
actions of neuronal activity, cerebral and systemic hemo-
dynamics, and feedback mechanisms—neurovascular 
(un)coupling, cerebral autoregulation, and CO2 reactiv-
ity [2]. Dynamic changes of multiple interacting factors 
including cerebral vasospasm [4], inflammatory markers 
[5], oxygenation [6], blood pressure, and cardiac output 
[7] precede DCI occurrence. The paramount goal of neu-
rocritical care is to predict, counteract or even prevent 
these secondary injuries to improve patients’ outcome. 
Consequently, the acute period following the hemorrhage 
is accompanied by extensive multimodal monitoring 
within a neurocritical care unit (NCCU) environment. 
The monitoring comprises aspects of cerebral physiology 
and hemodynamics (incl. intracranial pressure (ICP), cer-
ebral perfusion pressure (CPP)) integrated with systemic 
physiological parameters (arterial blood pressure, cardiac 
output, heart rate (HR), oxygenation, and ventilation) [8].

Signal complexity (i.e. entropy) describes the level 
of apparent disorder within a system. Low signal com-
plexity predicts unfavorable outcome in a variety of 
diseases and is assumed to reflect increased rigidity of 
the cardio/cerebrovascular feedback/regulating system 
leading to (or reflecting) autoregulation failure [9–12] 
This, in turn, leaves the brain susceptible to secondary 
injury. Physiological systems are regulated by multiple, 
interacting, mechanisms leading to dynamically chang-
ing biosignals across different temporal scales.14 Mul-
tiscale entropy (MSE), a version of signal complexity, 
estimates sample entropy over a range of increasingly 
downsampled (i.e. averaged) data [13, 14] In comparison 
to sample entropy of a single scale MSE has the follow-
ing benefits: 1. It allows for the evaluation of complex 
physiological systems that operate across different time 
scales; 2. It suppresses the impact of noise on the result-
ing metric. In 2012 Lu et  al. described the association 
between decreased ICP signal complexity and unfavora-
ble outcome after traumatic brain injury [9]. Zeiler et al. 
validated the concepts presented in a large multi-center 
cohort and extended the description to include other 
biosignals [15]. In aSAH, a metric related to signal com-
plexity, heart rate variability, has shown, to a degree, an 
association with complications and unfavorable outcome 
[16–18]. However, other patho-physiological states such 
as sepsis decrease heart rate variability, whereby its use in 
clinical practice for prediction of specific complications 

has remained limited. We aimed to exploit the abundance 
of monitoring data acquired from each patient within an 
NCCU environment to assess the potential use of MSE as 
an outcome predictor after aSAH.

Materials and methods
The study was approved by the local ethics committees 
Zurich and Aachen and was in accordance with the ethi-
cal standards laid down in the 2013 Declaration of Hel-
sinki for research involving human subjects. Informed 
consent was received before inclusion by the patient or 
their legal medical representative. Data from two pro-
spective observational cohorts (University Hospital 
Zurich, Switzerland; the Rheinisch-Westfälische Tech-
nische Hochschule Aachen, Germany) was analyzed. The 
Zurich cohort was used as the derivation cohort to estab-
lish models and analyses, while the Aachen cohort was 
used for external validation.

Study population
For the Zurich cohort a total of 244 consecutively admit-
ted adult patients with aSAH were recruited as part of the 
ICU Cockpit Prospective Cohort Study between 2016 and 
2022. All of these received multimodal monitoring data 
acquisition and were consequently evaluated for inclu-
sion. For the Aachen cohort a total of 316 consecutively 
admitted adult patients with aSAH were collected as part 
of a prospective cohort between 2014 and 2021. 102 of 
these received multimodal monitoring data acquisition 
and were consequently evaluated for inclusion. Inclusion 
criteria were: 1. aSAH due to an angiography confirmed 
ruptured aneurysm; 2. Admission to the NCCU and 
recording of high-resolution monitoring data. The only 
exclusion criterion was loss to follow up with missing 
12-month outcome. Patients at both centers were treated 
according to the guidelines of the Neurocritical Care 
Society, American Heart Association guidelines, and the 
respective standard therapies of the two centers [19, 20].

Data acquisition
The following relevant clinical data were prospectively 
included in the respective databases: Demograph-
ics, World Federation of Neurological Surgeons scale 
(WFNS)[21], modified Fisher Score (mFisher) [22], 
clinical course incl. aneurysm occlusion modality, 
occurrence of angiographic vasospasm (defined as nar-
rowing of the vessels in neuroimaging independent of 
clinical symptoms), delayed cerebral infarction (DCI—
infarction within neuroimaging not present on imaging 
performed within 24–48  h after aneurysm occlusion, 
and not attributable to other causes [23]), and outcome 
at 12  months (represented by the Glasgow Outcome 
Scale Extended—GOSE [24]). WFNS was evaluated 
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after neurological resuscitation (i.e. after insertion of 
EVD and/or hematoma evacuation). In either center 
outcome was assessed during routine outpatient fol-
low-up consultations or by contacting the patient, their 
next of kin, or caregiver by telephone in a structured 
interview. Physiological high-resolution data (at least 
100 Hz—BP, ICP, HR) was collected in Zurich (Moberg 
Component Neuromonitoring Systems (CNS)—
Moberg Research Inc, PA, USA) and Aachen (MPR2 
logO Datalogger (Raumedic, Helmbrechts, Germany) 
or, after July 2018, Moberg Component Neuromonitor-
ing Systems (CNS)—Moberg Research Inc, PA, USA). 
The data acquisition was started after admission to the 
respective NCCUs (after neurological resuscitation and 
generally after securing of the aneurysm) and stopped 
either when the patient was discharged to the ward or if 
invasive monitoring was deemed unnecessary.

Data preprocessing
The high-resolution (i.e. waveform) monitoring data 
from either center was transformed into an HDF5 for-
mat for streamlined analysis of the different formats. 
NCCU high-resolution waveform data contains, with-
out exception, artifacts which are not representative of 
the patients’ physiology. Thus, raw waveform data was 
preprocessed using ICM + ® (Cambridge Enterprise 
Ltd, Cambridge, United Kingdom). Data was curated 
to remove artifacts using both manual and automated 
methods. The manual methods were applied to remove 
sections with arterial line failure (continuous reduc-
tion of the arterial blood pressure amplitude followed 
by flushing) and sections with manipulation or open-
ing of the external ventricular drain (EVD—high fre-
quency artefacts with or without sudden changes of 
ICP level). Automated methods for cleaning of arterial 
blood pressure were removal of pressure below 0 or 
above 300  mmHg and removal of sections with pulse 
amplitude of less than 15 mmHg. Automated methods 
for cleaning of ICP included removal of values below 
−  20 or above 200  mmHg, removal of sections with 
low amplitude (< 0.04  mmHg) corresponding to noise 
or EVD opening, and removal of values with a 95% 
Spectral edge frequency above 10  Hz (high-frequency 
noise). Only the remaining data (termed artifact-free) is 
used for further processing mitigating the effect of arti-
ficial, non-physiological sections.

Data was then processed to acquire 10  s averages 
of mean arterial blood pressure (ABP), systolic blood 
pressure (SBP), diastolic blood pressure (DBP), ICP, 
ICP amplitude (AMP), CPP (difference between ABP 
and ICP), and HR. Averaging, in effect, allowed for the 
removal of cardiac and respiratory components.

Multiscale entropy analysis
MSE was calculated as previously described based on 
the estimation of sample entropy [13]. Sample entropy 
describes the probability that matching sequences of 
length m will exhibit the same behavior (i.e. will also 
match) when extended by one point. It is estimated as 
the negative natural logarithm of the ratio between the 
number of m + 1 length patterns to the corresponding m 
length patterns [25]. We estimated sample entropy using 
m = 2 and a tolerance of 0.15. MSE describes the process 
of calculating sample entropy over different time scales. 
A total of 20 scales starting from 1 up to 20 (produced by 
averaging based coarse graining i.e. Step 1—no averaging, 
step 2—averaging of 2 consecutive samples … step 20—
averaging of 20 consecutive samples) covering the range 
of slow waves was used. MSE is the resulting area under 
the curve (AUC) of the plotted sample entropies. Higher 
values represent higher signal entropy/complexity. MSE 
was calculated for each of the 10 s biosignals resulting in 
the metrics MSE abp, MSE sbp, MSE dbp, MSE cpp, MSE 
hr, MSE icp, MSE amp.

Statistical analysis
Statistical analysis was performed in R Studio (R ver-
sion 4.3.2—https://​www.r-​proje​ct.​org/—packages used: 
rstatix, pROC, boot, rms, MASS, ResourceSelection, pred-
tools, brant).

Descriptive variables are reported as counts/percent-
ages or mean ± standard deviation. Distribution of the 
different continuous variables was assessed using the 
Shapiro–Wilk test. Equality of variances was tested 
using the Bartlett test or the Levene test. Different sta-
tistical methods were explored to assess the association 
between MSE and outcome. Both univariable as well as 
multivariable analysis (covariates: age, WFNS, mFisher, 
and occurrence of DCI) were performed. A significance 
level of p < 0.05 was set due to the exploratory nature of 
the study and the different tests used for exploration. The 
Bonferroni corrected adjusted significance level would be 
p = 0.00089.

Univariable: First the different MSE variables were 
compared to outcome as dichotomized by GOSE (1–4 
vs. 5–8) using independent t-tests. To assess the overall 
diagnostic performance of the different MSE metrics, 
ROC curves (receiver operating characteristic curves) 
were plotted and evaluated by calculating the AUC (over-
all diagnostic performance) and its confidence interval 
(CI), and by estimating the optimal threshold (based on 
the Youden Index) to assess sensitivity, specificity, posi-
tive/negative predictive values, and accuracy. MSE met-
rics were then plotted against outcome as grouped into 
Dead/Vegetative (GOSE 1–2), Severe Disability (GOSE 

https://www.r-project.org/
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3–4), Moderate Disability (GOSE 5–6), and Good Recov-
ery (GOSE 7–8) and evaluated by analysis of variance 
(ANOVA).

Multivariable: Covariate adjusted logistic regression 
models were built with dichotomized GOSE (1–4 vs. 
5–8) as endpoint to assess the independence of the MSE 
metrics as predictors of outcome. Effect of the metrics on 
model performance was described using the odds ratio 
(OR) including its CI. Diagnostic performance of the 
models was assessed using the AUC, the Nagelkerke R2 
(R2), and the Brier Score. The effect of MSE metric inclu-
sion was evaluated using the DeLong’s test comparing 
the different AUCs to a base model without the inclusion 
of MSE metrics. The established models were validated 
both internally as well as externally. Internal validation 
was performed by bootstrapping (1000 replications with 
replacement). During this process prediction models 
were derived from each bootstrap sample and applied to 
both the bootstrap and the original dataset allowing for 
the estimation of optimism (i.e. the difference between 
the AUC/R2/Brier scores of the results derived from the 
original vs. the different bootstrapping data sets). Exter-
nal validity was assessed by: 1. Evaluating the calibration 
(agreement between predicted and observed outcome 
described using its intercept and slope and assessed using 
the Hosmer–Lemeshow-goodness-of-fit test) 2. Evaluat-
ing the discrimination (AUC) when applying the deriva-
tion-dataset-based model to the validation cohort.

Ordinal multivariable: Due to the ordinal nature of 
the outcome score we additionally performed a propor-
tional odds logistic regression and a sliding dichotomy 
analysis. Both, proportional odds logistic regression as 
well as sliding dichotomy allow for exploiting the range 
of the outcome scale by providing either the assessment 
of OR across different cutoffs or the assessment of base-
line adjusted outcome definitions thereby increasing sta-
tistical power [26]. Proportional odds logistic regression 
adjusted for covariates was applied to the same scales as 
described above with moving cutoffs (Dead/Vegetative 
vs. Severe Disability, Severe Disability vs. Moderate Dis-
ability, Moderate Disability vs. Good Recovery) to assess 
the common odds ratio. The proportional odds assump-
tion was tested using the Brant-Wald test. Lastly a sliding 
dichotomy approach was used to assess the importance 
of MSE metrics for a baseline severity adjusted outcome 
definition. For each patient, based on the baseline covari-
ates (age, WFNS, mFisher score, and occurrence of DCI), 
a prognostic risk probability for unfavorable outcome was 
estimated. The resulting scores were then divided into 3 
prognostic groups of roughly equal size corresponding 
to low, intermediate, and high likelihood of unfavorable 
outcome. For each prognostic group a separate cutoff 
was defined to dichotomize outcome into favorable and 

unfavorable, with the adjusted favorable outcome classi-
fied as:

•	 GOSE 7–8: for the group with low likelihood for 
unfavorable outcome,

•	 GOSE 5–8: for the group with intermediate likeli-
hood for unfavorable outcome

•	 GOSE 3–8: for the group with high likelihood for 
unfavorable outcome.

The resulting baseline severity adjusted outcome vari-
able was then assessed against the MSE metrics using 
logistic regression. For both methods bootstrapping was 
applied for internal validation and to acquire the CI.

Secondary analysis
Three additional secondary analyses were performed to 
assess further aspects associated with the metric MSE 
based on the most promising metrics found. First: To 
assess, whether early outcome prediction using MSE 
is feasible, a secondary analysis was performed includ-
ing only data acquired within the first 48 h after NCCU 
admission. Second: To evaluate whether MSE was 
associated with specific clinical aspects of the disease, 
values were assessed against clinical events. For this pur-
pose, the following additional clinical parameters were 
extracted from the electronic patient records (occurrence 
of rebleeding, global cerebral edema, brain herniation, 
and seizures) and evaluated using t-tests. The raw met-
rics (ABP, HR, ICP) were assessed against the derived 
MSE metric to reveal possible intercorrelations. Third: 
The stability of the metric was assessed by evaluating the 
change when considering longer amounts of data within 
one patient (between 1 and 24 h) as well as when com-
paring the results of the metrics to the duration of the 
measurement in the whole cohort.

Results
Patient characteristics and high‑resolution data availability
Derivation cohort: 241 patients were included as part of 
the derivation cohort (3 were excluded due to loss to fol-
low up). ABP/HR data was available in all patients, ICP 
data was available in 150 (62%) patients. The following 
amount of artefact free data was available: ABP—239 h/
patient (total of 57′257 monitoring hours), HR—267  h/
patient (total of 63′955 monitoring hours), ICP—205 h/
patient (total of 30′778 monitoring hours). Validation 
cohort: 89 Patients were included as part of the deriva-
tion cohort (13 were excluded due to loss to follow up). 
ABP/HR data was available in 101 (99%), and ICP data 
was available in 73 (72%) patients. The following amount 
of artefact free data was available: ABP/HR—268  h/
patient (total of 23′553 monitoring hours), ICP—290 h/
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patient (total of 21′169 monitoring hours). The median 
time between the initial hemorrhage and start of multi-
modality monitoring was 18 h in the derivation and 31 h 
in the validation cohort. The distributions of available 
data of the derivation and validation cohort can be found 
in the supplement including overall lengths of datasets 
as well as the density with respect to the timing from the 
initial hemorrhage (Additional file 1: A). The highest den-
sity of data was available between day 3 and 14 after the 
initial hemorrhage in either center. Overall descriptions 
of physiology metrics can be found in the supplement 
(Additional file  1: B). As this was a cohort undergoing 
active treatment, ICP within either cohort was mostly 
below 20  mmHg and ABP was around 90–100  mmHg. 
The clinical characteristics of the derivation and vali-
dation cohort can be found in Table  1. The outcome at 
12 months (assessed using GOSE) is shown in Fig. 1.

Univariable analysis
In a first step, the different MSE metrics were evalu-
ated against dichotomized outcome (GOSE 1–4 vs. 
GOSE 5–8). Overall, there was a difference between the 
outcome groups irrespective of the MSE metric. The 

specific p-values were: MSE abp (9.15 e-16), MSE sbp 
(3.81 e-19), MSE dbp (7.17 e-13), MSE cpp (1.77 e-6), 
MSE hr (6.65 e-19) MSE icp (4.70 e-10), MSE amp (6.72 
e-6). The respective data is shown in form of boxplots 
in Fig.  2 panel A. The predictive value of the different 
metrics (ROC curves) is shown in Fig.  2 panel B. The 
specific AUC (CI) can be found in Table 2. AUC ranged 
between 0.71 and 0.83. The highest values were found 
for MSE hr (AUC 0.83 (0.78–0.89)) and MSE sbp (AUC 
0.82 (0.77–0.87)). The Youden Index was established for 
each MSE metric and used to calculate related metrics 
and accuracy (Table 2). The accuracy of the metrics was 
between 68% (MSE amp) and 77% (MSE hr) when using 
the Youden Index as a cutoff. To assess the MSE met-
rics against a higher granularity of outcome, they were 
then plotted against Dead/Vegetative, Severe Disability, 
Moderate Disability, and Good Recovery (Fig.  3). The 
respective p-values can be found in Table  3. Overall, 
there were monotonic decreases of MSE with higher 
values found in more favorable outcomes.

Multivariable analysis
To assess the independence of MSE metrics when cor-
rected for covariates, multivariable logistic regression 
models were built. The results describing adjusted 
effect of the metric (OR), as well as the overall model 
performance (AUC, Nagelkerke R2, Brier Score) are 
shown in Table 4 (top panel). All MSE metrics remained 
independently associated with outcome with OR 
between 0.78 (MSE sbp) and 0.86 (MSE amp). AUCs 
ranged between 0.79 and 0.87 and R2 between 0.32 and 
0.51. Overall MSE sbp and MSE hr showed the highest 
effect and discriminatory value. MSE abp (p = 0.0068), 
MSE sbp (p = 0.0028), MSE dbp (p = 0.024), MSE cpp 
(p = 0.032), MSE hr (p = 0.003), MSE icp (p = 0.004), 
MSE amp (p = 0.029) all increased the AUC when com-
pared to the model excluding the MSE metrics.

To assess internal validity, optimism-corrected per-
formance estimates (AUC, Nagelkerke R2, and Brier 
Scores) were established using bootstrapping and are 
shown in Table 4 (middle panel). AUC optimism was at 
most 0.01 and R2 optimism was between 0.01 and 0.02. 
To assess external validity, the models were applied to 
the validation cohort describing discriminatory perfor-
mance (AUC) and calibration using the Hosmer–Leme-
show-goodness-of-fit test and the calibration intercepts 
and slopes (Table 4, bottom panel). AUCs of the mod-
els when applied to the validation cohort were between 
0.72 and 0.80. The Hosmer–Lemeshow-goodness-of-fit 
test found good model fits (test statistics were non-sig-
nificant). The calibration slope was between 0.79 and 
0.88 with the intercept being close to 0 in all cases.

Table 1  Patient characteristicsa

a WFNS World Federation of Neurosurgical Societies grading scale, mFisher 
modified Fisher scale, DCI delayed cerebral infarction

Derivation cohort 
(Zurich)

Validation 
cohort 
(Aachen)

Patients (n) N = 241 N = 89

Age (years) 58 ± 12.9 56 ± 10.7

Sex (female) 175 (65%) 63 (71%)

Aneurysm location (Anterior 
circulation)

183 (76%) 77 (87%)

WFNS

1 74 (31%) 20 (23%)

2 46 (19%) 14 (16%)

3 17 (7%) 21 (24%)

4 52 (22%) 22 (25%)

5 52 (22%) 12 (14%)

mFisher

1–2 14 (6%) 32 (36%)

3 69 (29%) 28 (32%)

4 158 (66%) 29 (32%)

Treatment

Clipping 106 (44%) 37 (42%)

Coiling 115 (48%) 52 (58%)

Other 20 (8%) 0 (0%)

Hydrocephalus 141 (42%) 56 (63%)

Vasospasm 156 (65%) 39 (44%)

DCI 62 (26%) 24 (27%)
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Fig. 1  Glasgow Outcome Scale Extended (GOSE) at 12 months (A—derivation cohort; B—validation cohort)

Fig. 2  MSE vs. Dichotomized Outcome. Panel A. The different MSE metrics are shown using boxplots comparing unfavourable (GOSE 1–4; pink) 
and favourable (5–8; green) outcome. An independent t-test was used for statistical analysis. Significant differences are shown using asterisks 
(*** = p < 0.001). The specific p-values were: MSE abo (9.15 e-16), MSE sbp (3.81 e-19), MSE dbp (7.17 e-13), MSE cpp (1.77 e-6), MSE hr (6.65 e-19) 
MSE icp (4.70 e-10), MSE amp (6.72 e-6). Panel B shows the corresponding ROC curves describing the predictive value of the different MSE scores
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Table 2  The AUCs and Youden Index based thresholdsa

Based on the univariable MSE ROC the different AUCs as well as the corresponding Youden Index based optimal threshold, sensitivity, specificity, positive and negative 
predictive values, overall accuracy are shown
a ABP mean arterial blood pressure, AMP intracranial pressure amplitude, AUC​ area under the curve, CI confidence interval, CPP cerebral perfusion pressure, DBP 
diastolic blood pressure, HR heart rate, ICP intracranial pressure, MSE multiscale entropy, NPV negative predictive value, PPV positive predictive value, SBP systolic 
blood pressure

MSE AUC (95%-CI) Threshold Sensitivity (%) Specificity (%) PPV (%) NPV (%) Accuracy (%)

abp 0.80 (0.74–0.85) 22.3 65 80 68 77 74

sbp 0.82 (0.77–0.87) 22.7 71 80 70 80 76

dbp 0.77 (0.71–0.83) 20.6 58 85 72 75 74

cpp 0.73 (0.65–0.81) 24.6 74 68 71 71 71

hr 0.83 (0.78–0.89) 23.0 82 73 68 86 77

icp 0.77 (0.70–0.85) 19.6 83 62 70 78 73

amp 0.71 (0.62–0.79) 22.2 81 56 66 73 68

Fig. 3  MSE vs. Ordinal Outcome. The different MSE metrics are shown using boxplots grouped by ordinal outcome: Dead/Vegetative (GOSE 1–2), 
Severe Disability (GOSE 3–4), Moderate Disability (GOSE 5–6), and Good Recovery (GOSE 7–8). The color coding ranges from intense pink (dead/
vegetative) to intense green (good recovery). The respective p-values of the performed ANOVA can be found in Table 3
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Table 3  P values of ANOVA comparing ordinal outcome and MSE metricsa

a Good—Good Recovery (GOSE 7–8); Moderate—Moderate Disability (GOSE 5–6), Severe—Severe Disability (GOSE 3–4); Dead/Vegetative—Dead/Vegetative (GOSE 
1–2)

MSE abp MSE sbp MSE dbp MSE cpp MSE hr MSE icp MSE amp

Good vs. Moderate 0.037 0.0087 0.075 0.526 0.018 0.233 0.544

Good vs. Severe 1.70 e-6 3.74 e-8 1.64 e-4 0.069 7.69 e-10 2.11 e-5 0.0018

Good vs. Dead/Vegetative 4.19 e-14 2.78 e-14 4.84 e-14 4.86 e-7 0.00e+00 5.82 e-9 2.69 e-4

Moderate vs. Severe 0.057 0.028 0.252 0.658 0.002 0.020 0.087

Moderate vs. Dead/Vegetative 4.42 e-8 9.17 e-10 1.20 e-6 3.45 e-4 1.78 e-8 1.01 e-4 0.035

Severe vs. Dead/Vegetative 0.018 0.0059 0.013 0.035 0.192 0.649 0.990

Table 4  Covariate adjusted logistic regression with internal and external validation.a

This table shows the adjusted OR (CI) of each MSE metric as well as corresponding AUC, Nagelkerke R2, and Brier Scores. Furthermore, optimism-corrected 
performance estimates (AUC, Nagelkerke R2, and Brier Scores) estimated using bootstrapping are shown (internal validation). Lastly, the AUC, Hosmer–Lemeshow-
goodness-of-fit and calibration slope/intercept are shown for assessment of external validity
a ABP mean arterial blood pressure, AMP intracranial pressure amplitude, AUC​ area under the curve, CI confidence interval, CPP cerebral perfusion pressure, DBP 
diastolic blood pressure, HR heart rate, ICP intracranial pressure, MSE multiscale entropy, OR odds ratio, R2 Nagelkerke R2, SBP systolic blood pressure

Original MSE abp MSE sbp MSE dbp MSE cpp MSE hr MSE icp MSE amp

OR (CI) 0.79 (0.71–0.86) 0.78 (0.70–0.85) 0.81 (0.73–0.89) 0.85 (0.77–0.93) 0.80 (0.74–0.86) 0.84 (0.78–0.90) 0.86 (0.80–0.93)

AUC (CI) 0.85 (0.81–0.90) 0.86 (0.82–0.91) 0.84 (0.79–0.89) 0.79 (0.72–0.86) 0.87 (0.83–0.92) 0.83 (0.76–0.89) 0.79 (0.72–0.87)

R2 0.47 0.50 0.44 0.32 0.51 0.40 0.33

Brier Score 0.15 0.15 0.16 0.19 0.14 0.17 0.18

Internal validation MSE abp MSE sbp MSE dbp MSE cpp MSE hr MSE icp MSE amp

AUC​ 0.85 0.86 0.84 0.78 0.87 0.82 0.78

R2 0.46 0.49 0.42 0.30 0.50 0.38 0.31

Brier Score 0.16 0.15 0.16 0.20 0.15 0.18 0.19

External validation MSE abp MSE sbp MSE dbp MSE cpp MSE hr MSE icp MSE amp

AUC (CI) 0.76 
(0.65–0.86)

0.76 (0.65–0.86) 0.76 (0.66–0.87) 0.72 (0.60–0.84) 0.79 (0.69–0.89) 0.80 (0.70–0.90) 0.76 (0.65–0.87)

Hosmer–Lemeshow-
goodness-of-fit

p = 0.18 p = 0.07 p = 0.86 p = 0.53 p = 0.15 p = 0.10 p = 0.28

Calibration intercept 0.05 0.08 0.05 0.05 0.03 − 0.03 0.02

Calibration slope 0.84 0.79 0.86 0.80 0.82 0.89 0.88

Table 5  Ordinal analyses: proportional odds regression and sliding dichotomy.a

a ABP mean arterial blood pressure, AMP intracranial pressure amplitude, CI confidence interval, CPP cerebral perfusion pressure, DBP diastolic blood pressure; HR 
heart rate, ICP intracranial pressure, MSE multiscale entropy, OR odds ratio, SBP systolic blood pressure

Proportional odds 
regression

MSE abp MSE sbp MSE dbp MSE cpp MSE hr MSE icp MSE amp

OR (CI) 0.81 (0.75–0.87) 0.79 (0.74–0.85) 0.82 (0.76–0.88) 0.85 (0.79–0.91) 0.83 (0.79–0.88) 0.86 (0.82–0.91) 0.88 (0.83–0.94)

p-value 2.9 e-9 3.6 e-11 2.5 e-7 1.5 e-5 3.0 e-10 1.7 e-7 4.1 e-5

Sliding 
dichotomy

MSE abp MSE sbp MSE dbp MSE cpp MSE hr MSE icp MSE amp

OR (CI) 0.82 (0.76–0.88) 0.82 (0.77–0.88) 0.82 (0.76–0.89) 0.89 (0.81–0.95) 0.87 (0.82–0.91) 0.89 (0.85–0.95) 0.91 (0.85–0.96)

p-value 1.9 e-7 3.4 e-8 1.2 e-6 0.001 2.6 e-7 1.7 e-4 0.003
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Ordinal multivariable analysis
To assess the effect of MSE on the outcome in form of 
an ordinal scale, a proportional odds logistic regression 
model adjusted for covariates was produced. The propor-
tional odds assumptions were met for all MSE metrics 
and the common OR and p-values of the proportional 
odds regression are shown in Table  5. Common OR 
ranged between 0.79 and 0.88. Lastly, a sliding dichotomy 
approach was used to estimate the added value of MSE 
metrics when outcome was dichotomized based on indi-
vidualized outcome prediction. The OR and p-values of 
the sliding dichotomy approach can be found in Table 5. 
Overall, OR ranged between 0.82 and 0.91.

Secondary analysis
Different further aspects of MSE were evaluated within 
the secondary analysis. Firstly, to evaluate the potential 
for early outcome prediction, MSE based on only the data 
acquired within the first 48 h after NCCU admission was 
evaluated. MSE sbp, MSE hr, and MSE icp all remained 
associated with outcome both when considered within 
univariable as well as multivariable and ordinal analyses 
(Additional file 1: C). After correction for the confound-
ers (age, WFNS, mFisher, and occurrence of DCI) the OR 
of MSE sbp, MSE hr, and MSE icp were 0.87 (0.81–0.94), 
0.86 (0.81–0.92), and 0.88 (0.83–0.95) per 1 step increase 
respectively. Overall, the models showed good discrimi-
nation with AUCs of 0.81 (0.75–0.85), 0.83 (0.77–0.87), 
0.78 (0.70–0.85) for the multivariable logistic regression 
models including MSE sbp, MSE hr, and MSE icp respec-
tively. The additional analyses can be found in Additional 
file 1: C.

In a second step, the MSE metrics MSE sbp, MSE hr, 
and MSE icp were evaluated against different clinical 
aspects and events (Additional file 1: D). Higher WFNS 
grade was associated with a decrease in all MSE met-
rics (MSE sbp: 25.4 ± 4.5 vs. 21.7 ± 4.2, p < 0.001; MSE 
hr: 24.6 ± 4.8 vs. 20.0 ± 5.1, p < 0.001; MSE icp: 21 ± 7 vs. 
16 ± 6, p < 0.001 for low vs. high WFNS respectively). 
While no MSE metric was associated with mFisher, MSE 
icp was higher in patients who received coiling (19 ± 7) as 
compared to clipping (16 ± 6, p = 0.003). Conditions asso-
ciated with or resulting from high ICP (cerebral edema, 
brain herniation) were associated with decreases in all 
three MSE metrics. Rebleeding and hydrocephalus on the 
other hand were only associated with a decrease in MSE 
sbp (rebleeding: 23.9 ± 4.6 vs. 20.0 ± 5.8, p = 0.008; hydro-
cephalus: 25.2 ± 5.1 vs. 22.4 ± 4.3, p < 0.001) and MSE hr 
(rebleeding: 23.1 ± 5.5 vs. 19.2 ± 6.7, p = 0.032; hydroceph-
alus: 24.1 ± 5.8 vs. 21.0 ± 5.2, p < 0.001) but not MSE icp. 
Similarly, DCI was associated with a decrease in MSE sbp 
(23.7 ± 5.0 vs. 22.5 ± 4.1, p = 0.039) and MSE hr (22.8 ± 5.6 

vs. 20.2 ± 5.3, p < 0.001), but not MSE icp. The additional 
results can be found Additional file 1: D.

Lastly, the stability of MSE was assess by evaluating the 
change when including longer amounts of data as well as 
when comparing the results of the metrics to the dura-
tion of the measurement (Additional file  1: E). Starting 
from 3 to 6 h, stable MSE values could be found. There 
was no difference in absolute value of MSE compared 
to the duration of the recording when considering all 
patients.

Discussion
Entropy, and in particular its multiscale version, MSE, 
builds on the previously described concept that physi-
ological systems are regulated by multiple, interact-
ing, mechanisms that collectively result in dynamically 
changing, irregular, fluctuations of biosignals across 
different temporal scales [14]. Lower MSE represents 
higher regularity of a system. While a “stable”, “regu-
lar” system would at first glance seemingly give the 
impression of being ‘healthy’, in reality, such a system is 
more rigid, with impaired capacity to counteract ever-
present, random environmental triggers. The disease 
course of aSAH includes a variety of pathological pro-
cesses necessitating continuous and rapid adjustments 
to equilibrate the system [27]. Patients that survive the 
initial hemorrhage remain at risk for developing sec-
ondary brain injury due to numerous pathophysiologi-
cal cascades and complications. As part of the early 
brain injury, due to the initial hemorrhage, ICP rises 
either immediately (due to the volume of the bleeding 
itself [28]) or with a certain delay (i.e. resulting hydro-
cephalus [29] and/or brain edema). In the worst-case 
scenario, either one can lead to a relevant reduction in 
CPP. If the system fails to counteract this decrease in 
cerebral perfusion, this may lead to transient cerebral 
hypoxia or, ultimately, even infarction. Various injury 
cascades (upregulation of inflammatory pathways [30], 
coagulopathy [31]) further damage the system in case 
of cerebral hypoxia. A non-reactive system, represented 
consequently by low MSE, has been associated with 
higher pressure reactivity index (PRx) values support-
ing the notion that MSE represents the activity level of 
the physiological regulation systems, including cerebral 
blood flow autoregulation [9, 15]. While both metrics 
clearly share similar mechanisms, to equate MSE with 
cerebrovascular reactivity (as assessed using PRx) 
would be an oversimplification, considering Lu et  al. 
also showed that PRx loses its predictive value when 
MSE is added to multivariable regression models for 
outcome prediction after traumatic brain injury [9].

The main driver of secondary brain injury in aSAH is 
DCI [3]. Although, DCI is the consequence of complex 
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interacting pathophysiological sequelae, a well described 
and potentially reversible cause is vasospasm, which 
describes the narrowing of cerebral vessels [4]. Depend-
ing on the severity of such narrowing, ischemia or even 
infarction can occur. In aSAH, intact cerebral autoregu-
lation is essential to counteract such dynamic reductions 
of vessel diameter by automatically and immediately 
increasing CPP. Autoregulation failure is detrimental, as 
symptomatic treatment (using vasoactive medications 
or intra-arterial spasmolysis) can only be initiated with a 
significant delay.

In addition to cerebral complications, aSAH leads to 
various systemic and most prominently cardiac compli-
cations [32, 33]. Both, myocardial ischemia and neuro-
genic stunned myocardium are found after aSAH leading 
to wall motion abnormalities and consequently reduced 
cardiac output. In the worst case, cardiac complications 
coincide with (or cause) pulmonary edema leading to 
further impairment of cardiac function and oxygenation 
[34–36]. Sufficient cardiac output is necessary to coun-
teract impaired perfusion due to vasospasm. Cardiac 
output guided therapy is beneficial for managing cerebral 
oxygenation in patients with vasospasm [7, 37]. Myo-
cardial injury might indeed be one cause of decreased 
entropy with previous reports describing good discrimi-
nation when assessing heart rate variability after aSAH 
and diagnosis of neurocardiogenic injury [17]. To date, 
the most commonly evaluated complexity related metric 
in aSAH is heart rate variability due to its simple deter-
mination based on short electrocardiograms [18]. Con-
sidering these results, it is not surprising that MSE hr was 
a predictor of outcome. However, variability and entropy 
cannot be used interchangeably due to the large number 
of metrics used for description some of which depend on 
distribution while others depend on specific patterns.

In aSAH, due to the complex nature and course of dis-
ease, NCCU monitoring plays a pivotal role for guiding 
treatment. Neurocritical care bioinformatics allow for 
the acquisition, integration, and synchronization of the 
various biosignals within the same environment, thereby 
permitting exploitation of advanced data-driven methods 
for guiding treatment and outcome prediction [38]. Yet, 
computational methods remain underutilized and are 
generally not readily available for direct bedside imple-
mentation. Commonly, single (at times arithmetic mean 
or worse, single snapshot) targets are used for guiding 
treatment, ignoring the potential benefits of complex 
integration. The results of this study underline the poten-
tial of advanced analytical tools for improving the under-
standing of the complex pathophysiology of multimodal 
monitoring dynamics after aSAH. However, relevant lim-
itations exist.

Limitations
Although this study included over 300 patients from 2 
centres, they were all treated at highly specialized, high 
resource centers with relatively high patient volumes. 
On a similar note, patients underwent active treatment 
throughout their NCCU stay. It is unclear if, and to 
what extent interventions and complications are asso-
ciated with changes in MSE. This is underlined by the 
results showing changes in MSE depending on various 
events. Either aspect, however, implies that the biosig-
nals acquired do not represent the “natural” course of 
the disease, but patients undergoing active treatment. 
Due to the exploratory nature of this study, we did not 
explore time-trends of MSE, thus we cannot comment on 
the patterns of variability of MSE over the course of the 
NCCU stay (e.g. depending on intervention, medication 
or similar) or whether there were specific turning points 
(e.g. refractory ICP increase, DCI etc.). Overall, many 
complications and disease aspects were associated with 
changes in MSE and it is likely that the resulting metric 
represents a composite of various aspects. It is impor-
tant to note that while the results were adjusted for the 
relevant and known outcome predictors age, clinical and 
imaging severity, and the important complication DCI, 
many other clinical variables are of importance when 
predicting outcome. To date, no multimodal monitoring 
based metric alone can or should replace clinical exami-
nation. However, metrics such as MSE should be seen 
as complementary allowing for additional physiology 
information.

Conclusions
This study provides the first description of MSE as an 
outcome predictor after aSAH. MSE metrics and thereby 
complexity of physiological signals are independent, 
internally and externally valid predictors of 12  month 
outcome after aSAH. MSE decreases monotonically with 
worse outcomes and remains a valid outcome predic-
tor when adjusting the outcome definition to the initial 
severity of disease and age. The promising results of this 
study warrant further investigation into the cause of the 
resulting complexity as well as its association with impor-
tant and potentially preventable complications (i.e. vasos-
pasm and DCI). Of particular importance will be the 
assessment of time-trends and the evaluation of intrain-
dividual episodes of decreased entropy and their associa-
tion to specific events. Promising targets for such analysis 
are MSE sbp and MSE hr since neither requires continu-
ous neuromonitoring and can therefore be applied to the 
whole aSAH population.
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