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Abstract 

Acute kidney injury (AKI) often complicates sepsis and is associated with high morbidity and mortality. In recent years, 
several important clinical trials have improved our understanding of sepsis-associated AKI (SA-AKI) and impacted clini-
cal care. Advances in sub-phenotyping of sepsis and AKI and clinical trial design offer unprecedented opportunities 
to fill gaps in knowledge and generate better evidence for improving the outcome of critically ill patients with SA-AKI. 
In this manuscript, we review the recent literature of clinical trials in sepsis with focus on studies that explore SA-AKI 
as a primary or secondary outcome. We discuss lessons learned and potential opportunities to improve the design 
of clinical trials and generate actionable evidence in future research. We specifically discuss the role of enrichment 
strategies to target populations that are most likely to derive benefit and the importance of patient-centered clinical 
trial endpoints and appropriate trial designs with the aim to provide guidance in designing future trials.

Introduction
Acute kidney injury (AKI) is associated with serious 
short- and long-term complications [1]. Critically ill 
patients with severe AKI [defined as Kidney Disease: 
Improving Global Outcomes (KDIGO) AKI Stage 2 or 
3] have an in-hospital mortality greater than 25% which 
exceeds 50% when renal replacement therapy (RRT) is 
needed. In the PROCESS study, 60-day hospital mortality 
was 6.2% for patients without AKI, 16.8% for those with 
stage 1 and 27.7% for patients with AKI stage 2 or 3 [2, 3]. 
Patients with less severe AKI, including subclinical AKI 
[defined as early kidney damage identified by biomark-
ers without serum creatinine (SCr) rise] are also at risk 

of both short- and long-term complications, including 
incident or worsening chronic kidney disease (CKD) and 
major adverse cardiovascular events (MACE) [4–6].

Sepsis is the most common contributing factor to AKI 
in acutely and critically ill patients [7]. Our understand-
ing of the pathophysiology of sepsis-associated AKI 
(SA-AKI) has improved over the last few years and prom-
ising therapeutic targets are emerging [8], giving hope to 
improved clinical outcomes. The 2023 Kidney Disease 
Clinical Trialists (KDCT) workshop, held in Washington 
D.C. (USA) in March 2023, provided multiple stakehold-
ers, including clinical researchers, regulatory authorities 
and commercial partners, with a scientific forum to dis-
cuss the current state of SA-AKI clinical research, iden-
tify challenges and priorities, and propose strategies for 
future research toward precision medicine (Table 1) [9]. 
The scientific program was developed by the KDCT sci-
entific academic committee and focused predominantly 
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on the role of sub-phenotying, enrichment strategies, 
selection of appropriate endpoints and outcomes, and 
consideration of alternative trial designs. This narrative 
review summarizes the presentations, discussions and 
conclusions of the meeting but does not include a sys-
tematic review of the existing literature.

Why should SA‑AKI be considered a specific entity?
The reported occurrence rate of SA-AKI varies between 
25 and 75% depending on the patient cohort, type and 
severity of sepsis, and criteria used to define the condi-
tion [8]. The prognosis is variable but current data sug-
gests that SA-AKI is associated with a higher risk of 
mortality and a lower chance of renal recovery than other 
types of AKI.

In 2022, an international Acute Disease Quality Initia-
tive (ADQI) consensus meeting focused on the defini-
tion, epidemiology and management of SA-AKI [8]. The 
expert panel acknowledged that SA-AKI was a heteroge-
neous syndrome that occurs as a direct consequence of 
sepsis (i.e., sepsis-induced AKI) or as a result of indirect 
mechanisms driven by interventions for sepsis or, in rare 
cases, because of factors not directly related to sepsis but 
nevertheless occurring in these patients. In the absence 
of an accepted definition of SA-AKI, the panel proposed 
to define SA-AKI by the presence of both, sepsis (as per 
Sepsis-3 criteria) and AKI (as defined by the KDIGO 
criteria). Further, sepsis-induced AKI was considered 
a sub-phenotype of SA-AKI in which sepsis-induced 
mechanisms directly lead to kidney damage.

The understanding of the pathophysiology of SA-AKI 
has significantly improved thanks to advances in experi-
mental model design and analytical techniques. Several 
specific processes and mechanisms have been identified 
that may contribute to the development of glomerular 

dysfunction and/or tubular injury in sepsis [7, 10]. These 
include endothelial dysfunction, inflammation, alteration 
of the renal microcirculation, activation of the renin–
angiotensin–aldosterone system (RAAS), mitochondrial 
dysfunction, complement activation, direct tubular injury 
and metabolic reprogramming [11]. While an in-depth 
review of the pathophysiology of SA-AKI is beyond the 
scope of this review, a few key processes believed to be 
important contributors are listed as they may be targets 
for therapeutic interventions (Fig. 1).

Role of biomarkers for sub‑phenotyping 
and enrichment
The application of various different biomarkers has pro-
vided granularity to the syndrome of AKI and allowed 
the identification of sub-phenotypes with different eti-
ologies, pathophysiological mechanisms and outcomes. 
One of the benefits is the opportunity for prognostic 
and predictive enrichment in clinical trials. Prognostic 
enrichment describes the application of a biomarker to 
identify a cohort of patients that is at high risk for a spe-
cific outcome (e.g., severe persistent AKI, advanced CKD, 
mortality), whereas predictive enrichment aims to iden-
tify patients who are likely to respond in a similar way to 
a specific treatment, usually because they share a com-
mon underlying pathobiology [12].

Prognostic enrichment sub‑phenotyping
Identifying SA-AKI sub-phenotypes with a higher risk of 
poor outcome provides opportunities to target interven-
tions toward the higher risk group and to exclude cohorts 
that may not benefit or potentially come to harm. Two 
recent studies by Ozrazgat-Baslanti et  al. tracked the 
clinical trajectories of AKI, one for surgical patients and 
one for all hospitalized patients with AKI [13, 14]. For 

Table 1 Description of the terminology used in precision medicine, adapted from Seymour et al. [64] and Stanski et al. [65]

Term Description

Phenotype Clinical features or traits that characterize a group of patients within a disease or syndrome, including genet-
ics, environmental factors and other clinically observed characteristics

Endotype Subset of patients defined by distinct biological mechanism of disease within a phenotype

Sub-phenotype A subset of clinical features in patients with a shared phenotype that distinguishes the group from other 
groups within that phenotype

Prognostic Indicators used to inform about risks of various outcomes

Predictive Indicators providing information about the likelihood of response to a given treatment

Drug (or intervention) response Differential responses to drug (or intervention) based on phenotype defined by an indicator

Heterogeneity of treatment effects (HTE) Differences in treatment responses in a group due to variability in drug response phenotype 
within that group

Treatable trait A subgroup characteristic that can be successfully targeted by an intervention

Enrichment A prospective strategy for addressing HTE by reducing heterogeneity of the sample population or increasing 
representation of patients with similar risk profiles



Page 3 of 11Legrand et al. Critical Care           (2024) 28:92  

surgical patients, the ADQI criteria were used to differen-
tiate between ‘No AKI,’ ‘Rapidly Reversed AKI’ ‘Persistent 
AKI with Renal Recovery,’ and ‘Persistent AKI without 
Renal Recovery’ [14]. Surgical patients with sepsis who 
exhibited ‘Persistent AKI without Renal Recovery’ had 
the highest hospital mortality (45%), RRT use (40%) and 
decline of glomerular filtration rate (GFR) in the year fol-
lowing surgery. Among hospitalized patients, those with 
‘Persistent AKI without Renal Recovery’ also had the 
highest hospital mortality (28%), need for RRT (13%) and 
risk of death within one year of discharge (19%). For cli-
nicians and researchers, the challenge is to identify these 
at-risk patients early and to investigate potential inter-
ventions that may modify any of the outcomes.

Among patients included in the FROG-ICU and 
ADRENOSS study, the authors showed that an elevated 
proenkephalin level > 80  pmol/L (found in roughly 6% 
of the cohorts) at the time of admission to the Intensive 
Care Unit (ICU) without meeting the serum creatinine 
(SCr) or urine output criteria of AKI, was associated with 
an increased risk of mortality [15, 16]. In a planned sub-
study of the PROCESS trial (a randomized controlled 
trial exploring the role of early goal directed therapy), the 
authors measured urinary cell cycle arrest markers tissue 
inhibitor of metalloproteinases 2 (TIMP-2) and insulin-
like growth factor binding protein 7 (IGFBP7) before 

and after the 6-hour resuscitation period [17, 18]. They 
demonstrated that patients who still had an elevated bio-
marker level ([TIMP-2]·[IGFBP7] > 0.3) after receiving 
fluid resuscitation were at higher risk for a composite 
endpoint of progression to severe AKI (Stage 2/3), receipt 
of dialysis or mortality. The incidence of this composite 
endpoint was similar in patients with elevated biomark-
ers post-resuscitation regardless of their pre-resuscita-
tion biomarker status and also similar in those with and 
without AKI at enrollment based on SCr and urine out-
put criteria.

Accurate sub-phenotyping based on clinical features 
will be essential to making full use of the large-scale 
electronic health record (EHR) data to understand and 
manage AKI. Confusion can result from existing efforts 
to define sepsis subclasses, where researchers used dif-
ferent approaches for classification (empirical, hypoth-
esis-based or agnostic) and interchangeable terms (such 
as subgroup, sub-phenotype or endotype) that were 
not reconciled with terminology applied in previously 
published studies [19]. Recent studies in unsupervised 
machine learning (ML) have given promise to the pros-
pect of classifying AKI patients into sub-phenotypes. 
These ML models characterize sub-phenotypes without 
adhering to any preconceived hypothesis or guidelines. 
Three published studies separately developed ML models 

Fig. 1 Areas identified as potential candidates to improve sepsis-associated AKI outcomes and to be considered as priorities for testing in clinical 
trials
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to sub-phenotype adult ICU patients with AKI [20–22], 
adult ICU patients with SA-AKI within 48  h of admis-
sion and hospitalized adults with AKI within 48  h of 
admission. Two studies identified biomarkers that were 
significantly different between sub-phenotypes, and all 
studies were able to differentiate sub-phenotypes related 
to decreased renal function and higher mortality [20, 
21, 23]. Finally, AKI trajectories have been proposed to 
define different phenotypes. The ADQI group published 
consensus statements regarding the definitions of ‘SA-
AKI’ and its timing (‘early SA-AKI,’ within 48 h of diag-
nosis of sepsis and ‘late SA-AKI,’ defined as AKI between 
48 h to day 7 after sepsis diagnosis) and also adopted the 
previously proposed timelines for AKI (7  days or less), 
acute kidney disease (1–90 days) and chronic kidney dis-
ease (90 + days) [8].

A major challenge is the fact that current methods for 
data-driven phenotyping are heterogeneous, there are no 
reproducible approaches across differing methodologies 
and datasets to identify sub-phenotypes and endotypes, 
and resources to aggregate the existing strategies for 
clinical impact are lacking [24]. These models were devel-
oped in specific cohorts and settings and their generaliz-
ability remains uncertain across different health systems 
and critical care units. Confirmatory studies in diverse 
settings will be needed. Any proposed sub-phenotypes 
should be assessed by testing for (1) consistency and 
reproducibility in other datasets, (2) biological plausibil-
ity and (3) clinical utility (i.e., ability to identify patients 
at high risk for a specific outcome or to predict treat-
ment response). Finally, the ideal phenotyping algorithm 
should impact clinical decision making in real time and 
provide increased value over current severity scores.

Predictive enrichment sub‑phenotyping
Because of the heterogeneous nature of critical illness, 
many clinical studies have not been able to identify treat-
ment benefits. The goal of precision medicine is to match 
the best available treatment option with the specific 
patient populations. Developing a classification system 
for biomarker-driven AKI endotypes will improve the 
understanding of AKI and enable researchers to engage 
in more specific therapeutic trials, thus getting closer to 
the goal of providing precision medicine to patients with 
AKI [24, 25] (Fig. 2).

In the setting of SA-AKI, an appealing approach is 
using big data to identify cohorts with shared biology 
(i.e., comorbidities, laboratory results, clinical variables, 
biomarkers) [16, 18]. Several groups have used artificial 
intelligence and advanced ML methods to find a variety 
of signals in the wealth of available data.

In the FINN-AKI cohort, investigators applied latent 
class analysis (LCA) and differentiated between two 

endotypes of AKI in patients with sepsis [21]. Patients 
with endotype-2, defined by higher plasma levels of 
inflammatory and endothelial injury markers, had higher 
90-day mortality compared to endotype-1 (41% vs 29%) 
and also a lower probability of short-term renal recovery.

In a retrospective analysis of two ICU cohorts, Bhatraju 
and colleagues used LCA to characterize two distinct 
SA-AKI endotypes [26]. All patients had plasma col-
lected within 48  h of ICU admission; 29 different clini-
cal and laboratory values and seven vascular host and 
inflammatory biomarkers were included in the analysis. 
Different levels of specific biomarkers (including angi-
opoietin 1 and 2) and significant differences in the inci-
dence of certain single-nucleotide polymorphism (SNPs) 
within angiopoietin-2 were identified across the 2 endo-
types. A two-group model best separated the data with 
approximately 60% of patients in endotype-1 and 40% in 
endotype-2 category. These findings were replicated in a 
validation cohort where endotype-2 was associated with 
a 2 or more greater risk of renal non-recovery and 28-day 
mortality compared to endotype-1, even after adjusting 
for severity of illness.

The authors then developed a parsimonious predic-
tion model that included the ratio of angiopoietin-2/1 
and soluble tumor necrosis factor receptor-1 (sTNFR-1). 
The model had fairly good c-statistic to predict AKI sub-
phenotypes; patients with lower biomarkers of endothe-
lial dysfunction and inflammation were characterized 
as endotype-1. When applying the model to the VASST 
database (vasopressin versus norepinephrine in patients 
with septic shock), the authors observed that these two 
AKI endotypes identified prior to randomization showed 
heterogeneity of treatment effect for the early addition of 
vasopressin to norepinephrine [26]. Specifically, patients 
classified as endotype-1 had a lower 90-day mortality 
with the early addition of vasopressin, while mortality 
was not significantly different in the endotype-2 group 
if randomized to vasopressin. Further research is neces-
sary to test these endotypes in prospective trials in SA-
AKI. Of note, these sub-phenotypes share characteristics 
with other sub-phenotypes reported in other conditions 
such as acute respiratory distress syndrome (ARDS) [27]. 
This observation may not be surprising given that (i) the 
mechanisms of sepsis-induced organ failure are likely (at 
least partially) shared between organs, and (ii) similar 
biomarkers were used to identify sub-phenotypes. In this 
line, sepsis is the leading cause of ARDS and sub-pheno-
types were replicated between sepsis and ARDS [28].

Seymour and colleagues harnessed data from four 
distinct sepsis cohorts (over 40,000 patients) to develop 
and validate four distinct phenotypes of sepsis [29]. They 
demonstrated differences in the incidence of organ injury 
(AKI, liver failure), as well as differences in biomarkers 
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(inflammatory, coagulopathy, etc.) between sub-phe-
notypes with cross-variation in sub-phenotypes within 
trials and the differential treatment effects. These stud-
ies suggest that heterogeneity of treatment effect exists 
across sub-phenotypes and that so-called ’negative’ ther-
apies may be reconsidered in enriched SA-AKI popula-
tions and among specific sub-phenotypes.

Predictive enrichment in randomized clinical trials
Most AKI sub-phenotypes were discovered or validated 
retrospectively using existing databases. In only a few 
prospective studies and clinical trials, biomarker-based 
sub-phenotyping was implemented for predictive enrich-
ment. The EUPHRATES trial was an interventional RCT 
where a biomarker (endotoxin activity) was used to risk 
stratify patients for enrollment, regardless of AKI status. 
Patients with an endotoxin activity of 0.6 or higher were 
randomized to receive two hemoadsorption treatments 
using polymyxin B and usual care versus sham hemop-
erfusion and usual care [30]. There was no difference 

in 28-day mortality between both groups. However, a 
subgroup analysis identified a ‘sweet spot’ of endotoxin 
activity (between 0.6 and 0.9) where patients may derive 
a benefit from hemoadsorption [31]. The trial did not 
include an assessment of the response to therapy and the 
protocol had no customization to patients’ response. It 
could be argued that some patients may have benefitted 
from greater customization of therapy.

A new trial, Tigris (NCT03901807), is currently under-
way to test this hypothesis prospectively. Importantly, 
the statistical analysis plan describes combining Tigris 
and EUPHRATES data using Bayesian statistics [32]. This 
approach is similar in concept to adaptive clinical trials 
which drop certain arms or groups as the trial progresses 
or even add or eliminate interventions. These adaptations 
incur less penalty when planned prospectively and may 
be important tools for future studies in SA-AKI.

In the ATHOS-3 trial [33], patients with vasodilatory 
shock on high-dose vasopressors were randomized 
to receive synthetic Angiotensin II or placebo with 

Fig. 2 Visual representation of sub-phenotypes (classifying patients based on clinical and physiological characteristics), endotypes (classifying 
patients based on mechanistic pathways underlying the phenotypes) and treatable traits that would lead to targeted therapies to be tested 
in randomized trials. Of note, overlap can exist between different phenotypes, endotypes and treatable traits
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continuation of other vasopressors. The trial demon-
strated that about 70% of patients in the intervention 
arm met the primary endpoint of a mean arterial pres-
sure (MAP) > 75  mmHg or increase by 10  mmHg or 
more from baseline within 3 h of drug initiation. While 
the phase III trial did not show a mortality difference, 
subsequent work in specific subgroups suggested a 
survival benefit, including those with septic AKI and 
patients in whom Angiotensin II was introduced at 
lower doses of vasopressors [34, 35].

Healthy volunteers have low levels of angiotensin I 
and angiotensin II and a low angiotensin I/II ratio. In 
contrast, some patients with vasodilatory shock have 
very high levels of angiotensin I with a significantly 
elevated angiotensin I/II ratio, suggesting reduced 
conversion of angiotensin I to angiotensin II, resulting 
in angiotensin II deficiency. Patients with a substan-
tially elevated Ang I/Ang II ratio, who were rand-
omized to receiving exogenous Angiotensin II, had a 
survival benefit compared to the group that received 
placebo [36]. In a post hoc analysis of the ATHOS-3 
trial, the authors measured angiotensin I and renin 
levels over time (at study initiation and 3 h later) and 
demonstrated that the angiotensin I and renin con-
centrations did not decrease in patients who received 
placebo while the levels fell in those who were rand-
omized to angiotensin II therapy [37]. Based on this 
finding, the authors hypothesized that the activity of 
the angiotensin converting enzyme (ACE) was reduced 
in patients with septic shock and/or endothelial dys-
function [38]. Giving angiotensin II to a subgroup of 
septic patients with hyperreninemia enrolled in the 
ATHOS-3 trial was associated with lower mortal-
ity. ACE is largely a pulmonary capillary endothelial 
enzyme, the activity of which decreases with increase 
in severity of lung injury. It is similarly proposed to 
decrease in those with other reasons associated with 
altered pulmonary blood flow, such as cardiac surgi-
cal patients or patients on extracorporeal membrane 
oxygenation (ECMO) [39]. ACE activity is difficult 
to measure. However, reduced ACE activity usually 
results in increased renin release and potential diver-
sion of the RAAS pathway through ACE 2, leading to 
more Ang 1–7 than Ang II [40, 41]. Thus, renin can be 
considered a surrogate marker of ACE activity. How-
ever, a true point of care bedside renin assay to tar-
get therapy is lacking and further work to define the 
role of biomarkers of the RAAS for predictive enrich-
ment to guide Angiotensin II administration is needed. 
Finally, these post hoc analyses highlight the overlap 
between sub-phenotypes, have a relative small sample 
size with a risk of type 1 error and should be consid-
ered exploratory (Table 2).

Which endpoint for SA‑AKI clinical trials?
Clinical trials in critical care, and particularly in criti-
cal care nephrology, have traditionally focused on end-
points believed to be of clinical importance such as 
kidney recovery (i.e., progression to end-stage kidney 
disease [ESKD] or non-recovery from AKI) [42, 43]. 
The risk of death is high in critically ill patients, par-
ticularly in those with sepsis and multi-organ dysfunc-
tion including AKI, approaching 40–50%. For approval 
of new drugs, regulatory authorities currently favor 
endpoints such as all-cause mortality or ‘Major adverse 
kidney event’ (MAKE), a composite of all-cause mortal-
ity or receipt of dialysis or significant decline in kidney 
function [44, 45]. However, death is also an impor-
tant competing endpoint of renal recovery and may be 
affected by many other factors than AKI. Even though 
MAKE considers the competing risk of death with 
recovery from AKI, the attributable mortality of AKI 
and non-recovery from AKI is uncertain and a sub-
stantial fraction of death may not be related to kidney 
events. Recovery from AKI is another important end-
point [46]. Non-recovery from AKI is associated with 
higher mortality and morbidity, including a risk for 
chronic kidney disease. However, assessing recovery 
solely using serum creatinine can be misleading in sep-
sis given the decrease production and increase volume 
of distribution that may overestimate the renal func-
tion. Alternative biomarkers and measuring glomerular 
filtration rate (i.e., iohexol clearance) may better fit the 
purpose.

Although not specific to SA-AKI, additional endpoints 
have been proposed that may also better reflect patient 
and family perceptions of their experience and outcomes 
after critical illness [47–49]. These include endpoints 
representing preservation (or improvement) of their 
function [e.g., physical function; activities of daily living 
(ADL), instrumental activities of daily living (IADL)], 
mental health, cognitive function or health-related qual-
ity-of-life (HRQOL)) [50].

How these endpoints rank in terms of importance to 
patients and their families is not certain and will need to 
be explored. Critical illness, major adverse kidney events, 
chronic kidney failure and longer-term RRT are certainly 
associated with impaired HRQOL but patients’ prefer-
ences differ depending on their personal views, sociocul-
tural impact and circumstances (Fig. 3) [51–53].

Clinical trials have generally not routinely integrated a 
wider spectrum of survivorship endpoints that may have 
great (or even greater relative) importance to patients 
(i.e., disability; return to home, social function; return to 
work) and their families (e.g., caregiver burden). Ability 
to return home, number of days at home, freedom from 
dialysis and hospital-free days were proposed as potential 
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important patient-centered outcomes for patients suffer-
ing from critical illness [49, 54].

Few studies have explored measures of the financial 
burden of critical illness as endpoints, specifically from 
the patient and family perspective. Financial challenges 
after critical illness are commonly experienced, particu-
larly in selected health systems and may derive from 
medical bills, (e.g., cost for dialysis) changes in insurance 
coverage, and the loss of employment income [7]. Finan-
cial concerns are likely very important outcomes and a 
source of tremendous stress for patients and their fami-
lies [55]. Moreover, they may be experienced by families 
long after the death of their family member.

Innovative clinical trials designs
Beside classic RCT’s with individual patient randomiza-
tion, more pragmatic designs have gained popularity over 
the last years [43, 56] (Fig.  4), including in the field of 
AKI. Designs such as cluster crossover randomized tri-
als have been applied with success in critically ill patients 
using renal endpoints (i.e., MAKE30) [57, 58]. The clus-
ter crossover design is an efficient approach particularly 
for trials in which the intervention can be brief and the 
endpoints occur within a short period of time. The use 
of EHR to collect data potentially reduces financial costs 
and also the potential for errors introduced through data 
entry by research personnel. Most importantly, cluster 
crossover trials allow the intervention of interest to be 
embedded into a clinical care workflow which increases 
the generalizability of the results, supports sustainability 
of the intervention after the trial and reduces the cost of 
implementing the trial.

Platform trials allow the testing of multiple interven-
tions and drugs while using a main master protocol, 
thus gaining efficiency [59]. A successful example is the 
SMART trial, in which 15,802 adults were randomized to 
saline or balanced crystalloids using a cluster crossover 
design. The incidence of MAKE was 14.3% in the bal-
anced fluid group versus 15.4% in the saline group [odds 
ratio (OR) 0.90; 95% CI 0.82–0.99] [57]. In a secondary 
analysis of the subgroup of 1641 septic patients, the bal-
anced crystalloids group had a lower 30-day in-hospital 
mortality compared to the saline group (26.3% vs 31.2%; 
adjusted OR, 0.74; 95% CI 0.59–0.93), along with a lower 
incidence of MAKE and a higher number of vasopressor- 
and RRT-free days compared to the saline group [57].

Another promising area in clinical trial design involves 
the a priori assessment of heterogeneity in treatment 
effects (HTE). Clinical trials estimate the average treat-
ment effect on the included sample. As discussed earlier, 
it is conceivable that different etiologies and sub-pheno-
types of AKI or different population (i.e., women vs men) 
may respond differently to interventions. The assessment 
of HTE can be made a priori using cluster/phenotypes 
or proper methods to estimate individualized treatment 
effects [60]. Assessments of HTE have been suggested 
to re-assess several completed trials and may be speci-
fied a priori to maximize the validity. In a recent report 
of the effects of ACE inhibitor and angiotensin receptor 
blocker (ARB) on COVID-19 patients [61], an individual-
ized treatment effect analysis was designed and reported 
a priori. Patients were randomized to initiation of an 
ACE inhibitor (n = 257), ARB (n = 248), ARB in combi-
nation with a chemokine receptor-2 inhibitor (n = 10) or 

Fig. 3 Visual representation of key outcomes to be considered in clinical trials investigating interventions in sepsis-associated AKI
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no renin-angiotensin-system inhibitor (control; n = 264). 
The investigators estimated the individual-level treat-
ment effect, conditioned on patients’ baseline covariates, 
using machine learning techniques. Expected absolute 
risk differences were then calculated for conditional aver-
age treatment effects at both the individual and subgroup 
levels. Although no signal of HTE was observed, other 
trials have succeeded in finding signals of HTE which 
could, in theory, be useful for guiding both, clinical prac-
tice and determining areas for further studies [62, 63]. 
Explorations of HTE in AKI trials are needed.

Conclusions
SA-AKI is associated with very high mortality and mor-
bidity. Over the last several years, various important 
clinical trials have improved our understanding of SA-
AKI and impacted clinical care. Recent advances in sub-
phenotyping and clinical trial design offer unprecedented 
opportunities to generate better evidence in these high-
risk patients to improve outcomes.
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